Journal Article
Review
Add like
Add dislike
Add to saved papers

Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method.

A novel tree-like cellulose nanofiber membrane was controllably fabricated via the electrospinning method by adding certain amount of tetra butyl ammonium chloride (TBAC) into the cellulose acetate solution followed by a deacetylation treatment process. The morphological structure, material structure and air filtration performance of both the cellulose and the cellulose acetate tree-like nanofiber membranes were characterized. Water contact angles, mechanical properties, and air filtration properties were also evaluated. The air filtration efficiency of cellulose acetate tree-like nanofiber membrane can reached 99.58%, and the eventually cellulose tree-like membrane still maintain 98.37%. The eventual cellulose tree-like nanofiber membranes exhibited small pore size, excellent hydrophilicity, good solvent resistance and preferable mechanical property. The small average pore size caused by the tree-like structure and the strong resistance to organic solvent can make it a potential candidate for the membrane separation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app