Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Regional myocardial function abnormalities are associated with macro- and microcirculation dysfunction in the metabolic syndrome: the RESOLVE study.

Abnormalities in myocardial and vascular function have been reported in the metabolic syndrome (MetS), but whether these alterations are related remains poorly documented. Our aim was accordingly to investigate interrelationships between macro- and microcirculatory vasoreactivity and left ventricular (LV) myocardial function in MetS patients. Eighty-eight MetS individuals and 44 age- and gender-matched healthy controls were enrolled. LV global longitudinal strain (GLS) was measured using Vector Velocity Imaging. Endothelial-dependent and independent reactivity in macro- and microcirculatory territories was established using flow-mediated dilation and nitrate-mediated dilation of the brachial artery and cutaneous blood flow measured with laser Doppler flowmetry in response to iontophoresis of acetylcholine and sodium nitroprusside, respectively. Carotid intima-media thickness (cIMT) was measured according to the Mannheim consensus. Compared to controls, MetS patients presented with reduced GLS (p < 0.001) increased cIMT and impaired (p < 0.001) endothelial and smooth muscle function of the brachial artery and the forearm skin microcirculation. Highly significant relationships (p < 0.01) were noticed between GLS and vascular outcomes. In addition, cIMT (β = 0.21, p = 0.024) and microcirculatory endothelium-dependent reactivity (β = - 0.20, p = 0.035) were identified as independent predictors of GLS. In MetS, abnormalities in myocardial function and endothelial as well as smooth muscle function of small and large arteries co-exist and are closely associated. This study supports a role for microvascular dysfunction in the pathogenesis of LV myocardial dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app