Add like
Add dislike
Add to saved papers

Interaction between a tubular beam of charged particles and a dispersive metamaterial of cylindrical configuration.

The interaction between a tubular beam of charged particles and a dispersive metamaterial of cylindrical configuration has been investigated theoretically. This metamaterial may have negative permittivity and negative permeability simultaneously over a certain frequency range where it behaves like a left-handed metamaterial. The dispersion equation for the eigenmodes spectra of a metamaterial and the coupled modes spectra of the system have been derived and numerically analyzed. It has been found that the absolute beam instability of bulk-surface waves occurs because of peculiarities of the eigenmodes spectra of a left-handed metamaterial. Specifically, the resonant frequency behavior of the permeability causes the emergence of the sections of dispersion curves with anomalous dispersion. It has been demonstrated that the symmetric bulk-surface mode with two field variations along the cylinder radius possesses the maximum value of instability increment. The obtained results allow us to propose the left-handed metamaterial as the delaying medium in oscillators of electromagnetic radiation without a need to provide an additional feedback in the system just as in a backward-wave tube.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app