Add like
Add dislike
Add to saved papers

Autonomously responsive pumping by a bacterial flagellar forest: A mean-field approach.

Physical Review. E 2017 September
This study is motivated by a microfluidic device that imparts a magnetic torque on an array of bacterial flagella. Bacterial flagella can transform their helical geometry autonomously in response to properties of the background fluid, which provides an intriguing mechanism allowing their use as an engineered element for the regulation or transport of chemicals in microscale applications. The synchronization of flagellar phase has been widely studied in biological contexts, but here we examine the synchronization of flagellar tilt, which is necessary for effective pumping. We first examine the effects of helical geometry and tilt on the pumping flows generated by a single rotating flagellum. Next, we explore a mean-field model for an array of helical flagella to understand how collective tilt arises and influences pumping. The mean-field methodology allows us to take into account possible phase differences through a time-averaging procedure and to model an infinite array of flagella. We find array separation distances, magnetic field strengths, and rotation frequencies that produce nontrivial self-consistent pumping solutions. For individual flagella, pumping is reversed when helicity or rotation is reversed; in contrast, when collective effects are included, self-consistent tilted pumping solutions become untilted nonpumping solutions when helicity or rotation is reversed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app