Add like
Add dislike
Add to saved papers

Fluctuation Effects on the Brush Structure of Mixed Brush Nanoparticles in Solution.

ACS Nano 2018 Februrary 28
A potentially attractive way to control nanoparticle assembly is to graft one or more polymers on the nanoparticle, to control the nanoparticle-nanoparticle interactions. When two immiscible polymers are grafted on the nanoparticle, they can microphase separate to form domains at the nanoparticle surface. Here, we computationally investigate the phase behavior of such binary mixed brush nanoparticles in solution, across a large and experimentally relevant parameter space. Specifically, we calculate the mean-field phase diagram, assuming uniform grafting of the two polymers, as a function of the nanoparticle size relative to the length of the grafted chains, the grafting density, the enthalpic repulsion between the grafted chains, and the solvent quality. We find a variety of phases including a Janus phase and phases with varying numbers of striped domains. Using a nonuniform, random distribution of grafting sites on the nanoparticle instead of the uniform distribution leads to the development of defects in the mixed brush structures. Introducing fluctuations as well leads to increasingly defective structures for the striped phases. However, we find that the simple Janus phase is preserved in all calculations, even with the introduction of nonuniform grafting and fluctuations. We conclude that the formation of the Janus phase is more realistic experimentally than is the formation of defect-free multivalent mixed brush nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app