Add like
Add dislike
Add to saved papers

Thalidomide inhibits proliferation and epithelial-mesenchymal transition by modulating CD133 expression in pancreatic cancer cells.

Oncology Letters 2017 December
Pancreatic cancer is a solid malignancy with a high mortality rate, on account of the high incidence of metastasis at the time of detection. The aggressiveness of pancreatic cancer may be partly driven by cancer stem cells (CSCs), which are characterized by the ability to self-renew and recapitulate tumors in the ectopic setting. However, although a number of drugs targeting CSCs are currently under clinical investigation, few effective drugs have been developed. The present study demonstrated that thalidomide inhibited cell proliferation and metastasis in pancreatic cancer cell lines through the inhibition of epithelial mesenchymal transition. The effect of thalidomide was more pronounced in cluster of differentiation 133 (CD133)+ SW1990 cells than in Capan-2 cells, in which CD133 expression was almost undetectable. The results revealed that CD133 is likely to serve a role in the antitumor effect of thalidomide and indicated that thalidomide could be developed as a CSC-specific adjuvant chemotherapy in pancreatic cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app