Add like
Add dislike
Add to saved papers

Chemical dynamics simulations of CID of peptide ions: comparisons between TIK(H + ) 2 and TLK(H + ) 2 fragmentation dynamics, and with thermal simulations.

Gas phase unimolecular fragmentation of the two model doubly protonated tripeptides threonine-isoleucine-lysine (TIK) and threonine-leucine-lysine (TLK) is studied using chemical dynamics simulations. Attention is focused on different aspects of collision induced dissociation (CID): fragmentation pathways, energy transfer, theoretical mass spectra, fragmentation mechanisms, and the possibility of distinguishing isoleucine (I) and leucine (L). Furthermore, discussion is given regarding the differences between single collision CID activation, which results from a localized impact between the ions and a colliding molecule N2 , and previous thermal activation simulation results; Z. Homayoon, S. Pratihar, E. Dratz, R. Snider, R. Spezia, G. L. Barnes, V. Macaluso, A. Martin-Somer and W. L. Hase, J. Phys. Chem. A, 2016, 120, 8211-8227. Upon thermal activation unimolecular fragmentation is statistical and in accord with RRKM unimolecular rate theory. Simulations show that in collisional activation some non-statistical fragmentation occurs, including shattering, which is not present when the ions dissociate statistically. Products formed by non-statistical shattering mechanisms may be related to characteristic mass spectrometry peaks which distinguish the two isomers I and L.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app