Add like
Add dislike
Add to saved papers

Phosphate insensitive aminophosphonate mineralisation within oceanic nutrient cycles.

ISME Journal 2018 April
Many areas of the ocean are nutrient-poor yet support large microbial populations, leading to intense competition for and recycling of nutrients. Organic phosphonates are frequently found in marine waters, but require specialist enzymes for catabolism. Previous studies have shown that the genes that encode these enzymes in marine systems are under Pho regulon control and so are repressed by inorganic phosphate. This has led to the conclusion that phosphonates are recalcitrant in much of the ocean, where phosphorus is not limiting despite the degradative genes being common throughout the marine environment. Here we challenge this paradigm and show, for the first time, that bacteria isolated from marine samples have the ability to mineralise 2-aminoethylphosphonate, the most common biogenic marine aminophosphonate, via substrate-inducible gene regulation rather than via Pho-regulated metabolism. Substrate-inducible, Pho-independent 2-aminoethylphosphonate catabolism therefore represents a previously unrecognised component of the oceanic carbon, nitrogen and phosphorus cycles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app