Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Band gap maps beyond the delocalization limit: correlation between optical band gaps and plasmon energies at the nanoscale.

Scientific Reports 2018 January 17
Recent progresses in nanoscale semiconductor technology have heightened the need for measurements of band gaps with high spatial resolution. Band gap mapping can be performed through a combination of probe-corrected scanning transmission electron microscopy (STEM) and monochromated electron energy-loss spectroscopy (EELS), but are rare owing to the complexity of the experiments and the data analysis. Furthermore, although this method is far superior in terms of spatial resolution to any other techniques, it is still fundamentally resolution-limited due to inelastic delocalization of the EELS signal. In this work we have established a quantitative correlation between optical band gaps and plasmon energies using the Zn1-x Cd x O/ZnO system as an example, thereby side-stepping the fundamental resolution limits of band gap measurements, and providing a simple and convenient approach to achieve band gap maps with unprecedented spatial resolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app