Add like
Add dislike
Add to saved papers

Ultrafast Laser-Shock-Induced Confined Metaphase Transformation for Direct Writing of Black Phosphorus Thin Films.

Few-layer black phosphorus (BP) has emerged as one of the most promising candidates for post-silicon electronic materials due to its outstanding electrical and optical properties. However, lack of large-scale BP thin films is still a major roadblock to further applications. The most widely used methods for obtaining BP thin films are mechanical exfoliation and liquid exfoliation. Herein, a method of directly synthesizing continuous BP thin films with the capability of patterning arbitrary shapes by employing ultrafast laser writing with confinement is reported. The physical mechanism of confined laser metaphase transformation is understood by molecular dynamics simulation. Ultrafast laser ablation of BP layer under confinement can induce transient nonequilibrium high-temperature and high-pressure conditions for a few picoseconds. Under optimized laser intensity, this process induces a metaphase transformation to form a crystalline BP thin film on the substrate. Raman spectroscopy, atomic force microscopy, and transmission electron microscopy techniques are utilized to characterize the morphology of the resulting BP thin films. Field-effect transistors are fabricated on the BP films to study their electrical properties. This unique approach offers a general methodology to mass produce large-scale patterned BP films with a one-step manufacturing process that has the potential to be applied to other 2D materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app