Add like
Add dislike
Add to saved papers

XIST Derepression in Active X Chromosome Hinders Pig Somatic Cell Nuclear Transfer.

Stem Cell Reports 2018 Februrary 14
Pig cloning by somatic cell nuclear transfer (SCNT) remains extremely inefficient, and many cloned embryos undergo abnormal development. Here, by profiling transcriptome expression, we observed dysregulated chromosome-wide gene expression in every chromosome and identified a considerable number of genes that are aberrantly expressed in the abnormal cloned embryos. In particular, XIST, a long non-coding RNA gene, showed high ectopic expression in abnormal embryos. We also proved that nullification of the XIST gene in donor cells can normalize aberrant gene expression in cloned embryos and enhance long-term development capacity of the embryos. Furthermore, the increased quality of XIST-deficient embryos was associated with the global H3K9me3 reduction. Injection of H3K9me demethylase Kdm4A into NT embryos could improve the development of pre-implantation stage embryos. However, Kdm4A addition also induced XIST derepression in the active X chromosome and thus was not able to enhance the in vivo long-term developmental capacity of porcine NT embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app