Add like
Add dislike
Add to saved papers

Tailoring a nanostructured plasmonic absorber for high efficiency surface-assisted laser desorption/ionization.

The surface-assisted laser desorption/ionization (SALDI) effect is investigated on Au plated anodized aluminum oxide (Au/AAO) thin films, a new type of low-cost broadband plasmonic absorber, which has attracted a lot of attention recently. Mass spectrometry (MS) measurements show that the ionization efficiency of Au/AAO substrates can be significantly improved (×30 fold) by simply tuning the size of nanopores in Au/AAOs. This leads to a signal-to-noise ratio of 394, which is 4 times better than the result obtained using the conventional matrix-assisted laser desorption/ionization (MALDI)-MS technique. Experimental and theoretical studies show that the dramatic improvement is caused by the pore-size-dependent optical and thermal properties of Au/AAOs. It provides a simple yet effective strategy for designing and building high performance plasmonic SALDI substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app