Add like
Add dislike
Add to saved papers

Development of novel delivery system for nanoencapsulation of catalase: formulation, characterization, and in vivo evaluation using oxidative skin injury model.

One of the main challenges for successful pharmaceutical application of Catalase (CAT) is maintaining its stability. Physical immobilization of CAT through nano-encapsulation was proposed to resolve this challenge. CAT encapsulating niosomes (e-CAT) were prepared using Brij® 30, 52, 76, 92, and 97 in the presence of cholesterol (Ch) by thin film hydration method. Niosomes were characterized for encapsulation efficiency % (EE), size, poly-dispersity index (PI), and morphology. Kinetic parameters, pH optimum, thermal stability, and reusability of CAT were determined. The influence of optimized e-CAT dispersion onto thermally injured rat skin was evaluated. Results revealed that encapsulation enhanced CAT catalytic efficiency (Vmax /Km ). Free CAT and e-CAT had pH optimum at 7.0. e-CAT exhibited improved thermal stability where it retained 50% residual activity at 60 °C. Free CAT lost its activity after three consecutive operational cycles; however, e-CAT retained 60% of its initial activity following 12 cycles. After 24 h of topical application on thermal injury, a significant difference in lesion size was observed with e-CAT compared with the control group. Based on these encouraging results, CAT immobilization demonstrated a promising novel delivery system that enhances its operational stability. In addition, nano-encapsulated CAT can be anticipated to be beneficial in skin oxidative injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app