Add like
Add dislike
Add to saved papers

Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation.

Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. Gene colocalisation and coregulation-i.e. the spatial proximity of two communicating genes-is one factor capable of accelerating the target search process along the DNA. We perform Monte Carlo computer simulations and demonstrate the benefits of gene colocalisation for minimising the search time in a model DNA-protein system. We use a simple diffusion model to mimic the search for targets by proteins, produced initially in bursts of multiple proteins and performing the first-passage search on the DNA chain. The behaviour of the mean first-passage times to the target is studied as a function of distance between the initial position of proteins and the DNA target position, as well as versus the concentration of proteins. We also examine the properties of bursty target search kinetics for varying physical-chemical protein-DNA binding affinity. Our findings underline the relevance of colocalisation of production and binding sites for protein search inside biological cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app