Add like
Add dislike
Add to saved papers

miR‑873 inhibits colorectal cancer cell proliferation by targeting TRAF5 and TAB1.

Oncology Reports 2018 March
MicroRNA-873 (miR‑873) has been reported to be dysregulated in a variety of malignancies, however, the biological function and underlying molecular mechanism of miR‑873 in colorectal cancer (CRC) remain unclear. In the present study we found that the expression levels of miR‑873 were markedly decreased in CRC cell lines and tissues from patients. Statistical analysis revealed that miR‑873 expression was inversely correlated with the disease stage of CRC. Kaplan‑Meier survival analysis revealed that patients with CRC with lower miR‑873 expression had shorter overall survival rates. Additionally, downregulation of miR‑873 enhanced the proliferation of CRC cells, while upregulation of miR‑873 reduced this proliferation. Furthermore, we found that tumor necrosis factor (TNF) receptor-associated factor 5 (TRAF5) and TGF‑β activated kinase 1 (MAP3K7) binding protein 1 (TAB1) were direct targets of miR‑873 in CRC cells. A luciferase assay revealed that ectopic expression of miR‑873 significantly reduced nuclear factor κB (NF‑κB) luciferase activity, while ectopic expression of miR‑873 inhibitor enhanced luciferase activity, suggesting that downregulation of miR‑873 can activate NF‑κB signaling. Therefore, our findings established a tumor-suppressive role for miR‑873 in the inhibition of CRC progression, which may be employed as a novel prognostic marker and as an effective therapeutic target for CRC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app