Add like
Add dislike
Add to saved papers

Accurate shape measurement of focusing microstructures in Fourier digital holographic microscopy.

Applied Optics 2018 January 2
This paper proposes a measurement method of focusing objects with a high gradient shape of a small and large radius of curvature. The measurements are carried out on a Fourier digital holographic microscope with optimized illumination conditions maximizing the usage of the system's numerical aperture. The obtained fringe patterns are the result of interference of deformed spherical object and spherical reference waves. The key elements of the method are the aberration compensation and calibration procedures. They provide accurate reconstruction of the object wave and determination of the focus position of the sample. The shape is calculated in two steps. First, the object wave is reconstructed at the plane of the object focus using single or multiframe phase extraction algorithm and the specialized propagation method. The step includes compensation for spherical aberration. In the second step, the sample shape is computed with the local ray approximation approach. The proposed method is experimentally validated with measurements of challenging, high gradient shapes (convex, concave) of different radiuses of curvature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app