Add like
Add dislike
Add to saved papers

A novel cytosensor based on Pt@Ag nanoflowers and AuNPs/Acetylene black for ultrasensitive and highly specific detection of Circulating Tumor Cells.

Circulating tumor cells (CTCs), as the cellular origin of metastasis, are cancer cells that break away from a primary tumor and circulate in the peripheral blood. And they provide a wealth of information about tumor phenotype. Here, this work reported a novel ultrasensitive immunoassay protocol for the detection of CTCs by using Pt@Ag nanoflowers (Pt@AgNFs) and AuNPs/Acetylene black (AuNPs/AB) nanomaterial. In the established approach, AuNPs/AB nanomaterial was used as substrate material to increase the specific surface area and enhance the conductivity of the gold electrode. Protein G was used for oriented immobilization of capture antibody, which strongly improved the capture efficiency of MCF-7 cells. The innovatively synthesized Pt@AgNFs by our group with high specific surface area and good biocompatibility were not only as the carriers of signal antibodies (Ab2 ) but also catalyzed the reduction of H2 O2 , which effectually amplified the current signal. A linear relationship between current signals and the concentrations of CTCs was obtained in the range from 20 to 1×106 cells mL-1 and the detection limit is as low as 3 cells mL-1 on condition of acceptable stability and reproducibility. Furthermore, the as-proposed cytosensor showed excellent performance in the detection of CTCs in human blood samples. These results suggest that the proposed cytosensor will be a promising application for accurately quantitative detection of CTCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app