Add like
Add dislike
Add to saved papers

Small interfering RNA-mediated silencing of G-protein-coupled receptor 137 inhibits growth of osteosarcoma cells.

Purpose: Osteosarcoma is the most widespread primary carcinoma in bones. Osteosarcoma cells are highly metastatic and frequently develop resistance to chemotherapy making this disease harder to treat. This identifies an urgent need of novel therapeutic strategies for osteosarcoma. G-Protein-coupled receptor 137 (GPR137) is involved in several human cancers and may be a novel therapeutic target.

Methods: The expression of GPR137 was assessed in one osteoblast and three human osteosarcoma cell lines via the quantitative real-time polymerase chain reaction and western blot assays. Stable GPR137 knockdown cell lines were established using an RNA interference lentivirus system. Viability, colony formation, and flow cytometry assays were performed to measure the effects of GPR137 depletion on cell growth. The underlying molecular mechanism was determined using signaling array analysis and western blot assays.

Results: GPR137 expression was higher in the three human osteosarcoma cell lines, Saos-2, U2OS, and SW1353, than in osteoblast hFOB 1.19 cells. Lentivirus-mediated small interfering RNA targeting GPR137 successfully knocked down GPR137 mRNA and protein expression in both Saos-2 and U2OS cells. In the absence of GPR137, cell viability and colony formation ability were seriously impaired. The extent of apoptosis was also increased in both cell lines. Moreover, AMP-activated protein kinase α, proline-rich AKT substrate of 40 kDa, AKT, and extracellular signal-regulated kinase phosphorylation levels were down-regulated in GPR137 knockdown cells.

Conclusions: The results of this study highlight the crucial role of GPR137 in promoting osteosarcoma cell growth in vitro . GPR137 could serve as a potential therapeutic target against osteosarcoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app