Add like
Add dislike
Add to saved papers

P-GaSe/N-MoS 2 Vertical Heterostructures Synthesized by van der Waals Epitaxy for Photoresponse Modulation.

Small 2018 Februrary
The important role of p-n junction in modulation of the optoelectronic properties of semiconductors is widely cognized. In this work, for the first time the synthesis of p-GaSe/n-MoS2 heterostructures via van der Waals expitaxial growth is reported, although a considerable lattice mismatching of ≈18% exists. According to the simulation, a significant type II p-n junction barrier located at the interface is expected to be formed, which can modulate optoelectronic properties of MoS2 effectively. It is intriguing to reveal that the presence of GaSe can result in obvious Raman and photoluminescence (PL) shift of MoS2 compared to that of pristine one, more interestingly, for PL peak shift, the effect of GaSe-induced tensile strain on MoS2 has overcome the p-doping effect of GaSe, evidencing the strong interlayer coupling between GaSe and MoS2 . As a result, the photoresponse rate of heterostructures is improved by almost three orders of magnitude compared with that of pristine MoS2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app