Add like
Add dislike
Add to saved papers

Hepatic miR-125b inhibits insulin signaling pathway by targeting PIK3CD.

Insulin resistance is often characterized as the most critical factor contributing to the development of (T2D) type 2 diabetes. MicroRNAs (miRNAs) are endogenous non-coding short single-stranded RNAs that function as negative regulators in many physiological and pathological processes. The objective of this study was to evaluate the roles of miR-125b in the regulation of insulin sensitivity in hepatocytes. We found that hepatic miR-125b levels were significantly increased in the patients with type 2 diabetes, high fat diet (HFD) mice, ob/ob and db/db mice. In vitro, miR-125b was also significantly up-regulated in tumor necrosis factor-alpha- (TNF-α) and glucosamine-induced insulin resistance conditions. Furthermore, miR-125b overexpression impaired the insulin signaling pathway in HepG2 cells, L02c cells, and primary hepatocytes. Inhibition of miR-125b improved insulin sensitivity, especially in insulin-resistant cells induced by either TNF-α or glucosamine. We demonstrated that miR-125b targeted the 3'-untranslated region (3'-UTR) of phosphoinositide 3-kinase catalytic subunit delta (PIK3CD) mRNA. The hepatic PIK3CD protein levels were markedly decreased in patients with type 2 diabetes, HFD, ob/ob, and db/db mice. Inhibition of PIK3CD markedly attenuated the improvement of insulin sensitivity induced by miR-125b inhibitors. More importantly, overexpressing miR-125b in mice causes insulin resistance and impairs glucose homeostasis. Together, these findings indicate that miR-125b inhibits insulin sensitivity by targeting PIK3CD in hepatocytes, supporting hepatic miR-125b, or PIK3CD are potential therapeutic target of insulin resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app