Add like
Add dislike
Add to saved papers

Electrochemical sensing platform based on kelp-derived hierarchical meso-macroporous carbons.

In this paper, kelp (Laminaria japonica), as a kind of abundant biomass, is used as the precursor for the preparation of kelp-derived hierarchical meso-macroporous carbons (K-dHMMCs) through the carbonization under nitrogen (N2 ) atmosphere at high temperature. The K-dHMMCs exhibits the unique structure with high specific surface area of 416.02 m2  g-1 , large pore volume of 0.24 cm3  g-1 , the hierarchical meso-macroporous size distribution centered at 2, 12 and 82 nm and high density of defective sites, enabling K-dHMMCs attractive for the electrocatalysis. Drop-casting K-dHMMCs on the glassy carbon (GC) surface allows the construction of K-dHMMCs based electrochemical sensing platform, which shows electrocatalytic activities towards many electroactive molecules, such as potassium ferricyanide, nicotinamide adenine dinucleotide (NADH), hydrogen peroxide (H2 O2 ), dopamine (DA), uric acid (UA), ascorbic acid (AA), epinephrine (EP), l-tyrosine (Tyr) and acetaminophen (APAP). Especially, the K-dHMMCs modified GC (K-dHMMCs/GC) electrode exhibits higher sensitivity, wider linear range, and lower detection limit than both carbon nanotubes modified GC (CNTs/GC) and GC electrodes for H2 O2 detection, which makes the K-dHMMCs/GC electrode to be able to determine the H2 O2 levels in human urine sample and monitor the H2 O2 released from human cancer cells. These results demonstrate that K-dHMMCs/GC possesses a great potential for conventional electrochemical sensing applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app