JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibition of IRE1 results in decreased scar formation.

Wound healing is characterized by the production of large amounts of protein necessary to replace lost cellular mass and extracellular matrix. The unfolded protein response (UPR) is an important adaptive cellular response to increased protein synthesis. One of the main components of the UPR is IRE1, an endoplasmic reticulum transmembrane protein with endonuclease activity that produces the activated form of the transcription factor XBP1. Using luciferase reporter mice for Xbp1 splicing, we showed that IRE1 was up-regulated during excisional wound healing at the time in wound healing consistent with that of the proliferative phase, when the majority of protein synthesis for cellular proliferation and matrix deposition occurs. Furthermore, using a small molecule inhibitor of IRE1 we demonstrated that inhibition of IRE1 led to decreased scar formation in treated mice. Results were recapitulated in a hypertrophic scar mouse model. These data help provide a cellular pathway to target in the treatment of hypertrophic scarring and keloid disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app