Add like
Add dislike
Add to saved papers

Longitudinal study of esophageal mucosal damage after esophagectomy and gastric interposition: relationship between reflux-related mucosal injury and Notch signaling.

Background: Esophagectomy with gastric interposition could serve as a good human reflux model to study the molecular pathogenesis of esophageal mucosal damage induced by gastroesophageal reflux. This study was to investigate the role of Notch signaling in reflux injury of esophageal mucosa.

Methods: Patients undergoing Ivor-Lewis esophagectomy for early stage esophageal squamous cell carcinoma were included. Follow-ups were scheduled at 6, 18, 36 and 48 months postoperatively, including reflux symptom assessment, endoscopic and histological evaluation of esophageal mucosal damage. The expressions of Notch1 and its downstream target gene Hes1 were evaluated by real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC).

Results: Forty-four out of 48 patients completed four follow-ups. Injuries of esophageal remnant confirmed by endoscopical and histological examinations were both more often with a longer postoperative period (P<0.05). The mRNA expression levels of Notch1 and Hes1 were decreased in a time-dependent manner after operation (P<0.001). Notch1 and Hes1 mRNA levels were significantly higher in normal squamous mucosa than in esophagitis, and higher in esophagitis than in metaplasia (P<0.05). Immunohistochemical study also demonstrated a similar protein expression pattern. Samples with endoscopic evidence of mucosal damage exhibited lower expression of Notch1 mRNA levels as compared to biopsies without visualized damage (P=0.035).

Conclusions: This is the first longitudinal study on Notch signaling in human esophagectomy model, our preliminary findings suggest decreased Notch signaling might be involved in the development of mucosa damage caused by gastroesophageal reflux.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app