Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Plasmonic waveguide design for the enhanced forward stimulated brillouin scattering in diamond.

Scientific Reports 2018 January 9
We propose a scheme of metal/dielectric/metal waveguide for the enhanced forward stimulated Brillouin scattering (FSBS) in diamond that is mediated by gap surface plasmons. Numerical results based on finite-element method show that the maximum Brillouin gain in the small gap (~100 nm) can exceed 106  W-1  m-1 , which is three orders of magnitude higher than that in diamond-only waveguides. It is found that the radiation pressure that exists at the boundaries of metal and diamond plays a dominant role in contributing to the enhanced forward stimulated Brillouin gain, although electrostrictive forces interfere destructively. Detailed study shows that high FSBS gain can still be obtained regardless of the photoelastic property of the dielectric material in the proposed plasmonic waveguide. The strong photon-phonon coupling in this gap-surface-plasmon waveguide may make our design useful in the development of phonon laser, RF wave generation and optomechanical information processing in quantum system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app