Add like
Add dislike
Add to saved papers

Administration of co-expressed Penaeus stylirostris densovirus-like particles and dsRNA-YHV-Pro provide protection against yellow head virus in shrimp.

Journal of Biotechnology 2018 Februrary 11
The activation of the innate RNA interference pathway through double-stranded RNAs (dsRNAs) is one of the approaches to protecting shrimp from viruses. Previous studies have shown that injection of specific dsRNAs can successfully inhibit viral infection in shrimp. However, inhibition requires high levels of dsRNA and dsRNA stability in shrimp is limited. Virus-like particles (VLPs) have been applied to deliver nucleic acids into host cells because of the protection of dsRNAs from host endonucleases as well as the target specificity provided by VLPs. Therefore, this study aimed to develop Penaeus stylirostris densovirus (PstDNV) VLPs for dsRNA deliver to shrimp. The PstDNV capsid protein was expressed and can be self-assembled to form PstDNV VLPs. Co-expression of dsRNA-YHV-Pro and PstDNV capsid protein was achieved in the same bacterial cells, whose structure was displayed as the aggregation of VLPs by TEM. Tested for their inhibiting yellow head virus (YHV) from infecting shrimp, the dsRNA-YHV-Pro-PstDNV VLPs gave higher levels of YHV suppression and a greater reduction in shrimp mortality than the delivery of naked dsRNA-YHV-Pro. Therefore, PstDNV-VLPs are a promising vehicle for dsRNA delivery that maintains the anti-virus activity of dsRNA in shrimp over a longer period of time as compared to native dsRNAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app