Add like
Add dislike
Add to saved papers

Milrinone-Induced Postconditioning Requires Activation of Mitochondrial Ca 2+ -sensitive Potassium (mBK Ca ) Channels.

OBJECTIVES: Cardioprotection by postconditioning requires activation of mitochondrial large-conductance Ca2+ -sensitive potassium (mBKCa ) channels. The involvement of these channels in milrinone-induced postconditioning is unknown. The authors determined whether cardioprotection by milrinone-induced postconditioning involves activation of mBKCa channels in the rat heart in vitro.

DESIGN: Randomized, prospective, blinded laboratory investigation.

SETTING: Experimental laboratory.

PARTICIPANTS: Male Wistar rats.

INTERVENTIONS: Hearts of male Wistar rats were randomized, placed on a Langendorff system, and perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 minutes of global ischemia and 60 minutes of reperfusion. At the onset of reperfusion, hearts were perfused with different concentrations of milrinone (0.3-100 μM) for determination of a dose-effect curve. In a second set of experiments, 3 μM milrinone was administered in combination with the mBKCa channel inhibitor paxilline (1 μM). Infarct size was determined by triphenyltetrazoliumchloride staining.

MEASUREMENTS AND MAIN RESULTS: In control animals, infarct size was 37 ± 7%. Milrinone at a concentration of 3 μM reduced infarct size to 22 ± 7% (p < 0.05 v control). Higher milrinone concentrations did not confer stronger protection. Paxilline completely blocked milrinone-induced cardioprotection whereas paxilline alone had no effect on infarct size.

CONCLUSIONS: This study shows that activation of mBKCa channels plays a pivotal role in milrinone-induced postconditioning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app