Add like
Add dislike
Add to saved papers

Comparative study of tribochemistry of ultrahigh molecular weight polyethylene, polyphenylene sulfide and polyetherimide in tribo-composites.

HYPOTHESIS: Tribochemical reactions of polymer matrix with steel counterpart can exert an important role in tribofilm's structure, and thereby affect the tribological performance of its composites.

EXPERIMENTS: In the present work, tribochemistry of ultrahigh molecular weight polyethylene (UHMWPE), polyphenylene sulfide (PPS) and polyetherimide (PEI) in tribo-composites was comparatively studied. Two kinds of formulations, i.e. conventional composites filled with carbon fibers and graphite and hybrid nanocomposites containing additional silica (SiO2 ) nanoparticles, were investigated.

FINDINGS: It was revealed that when rubbing with steel, molecular chains of UHMWPE were broken and free radicals finally chelated with the counterface. Whereas, PPS molecules underwent thermal decomposition, oxidation and finally ferrous sulfide (FeS) and ferric sulfate [Fe2 (SO4 )3 ] were generated. Chelating reaction of PEI was identified only for sliding of PEI-based nanocomposite. Tribochemistry of polymer molecules played an important role in tribofilm formation and tribological performance of the conventional composites. When sliding took place with the hybrid nanocomposites at low pv conditions, tribochemistry of polymer molecules played a similar role as for the conventional composites. Nonetheless, at high pv conditions, independent on the polymer matrices, robust tribofilms containing high fraction of silica were generated on the steel counterface, minimizing direct rubbing of the friction pair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app