Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of the Autotaxin-LPA Pathway in Dexamethasone-Induced Fibrotic Responses and Extracellular Matrix Production in Human Trabecular Meshwork Cells.

Purpose: Dexamethasone (Dex) regulates aqueous humor outflow by inducing reorganization of the cytoskeleton and extracellular matrix (ECM) production. Rho kinase (ROCK) has an important role in this process, but the upstream pathway leading to its activation remains elusive. The purpose of the study was to determine the role of autotaxin (ATX), an enzyme involved in the generation of lysophosphatidic acid (LPA), in the Dex-induced fibrotic response and ECM production in human trabecular meshwork (HTM) cells.

Methods: The expression of ATX in specimens from glaucoma patients was investigated by immunohistochemistry. Regulation of ATX expression and the changes in actin cytoskeleton, ECM production, myosin light chain (MLC) and cofilin phosphorylation, ATX secretion, and lysophospholipase D (lysoPLD) activity induced by Dex treatment in HTM cells were determined by immunofluorescence, real-time quantitative PCR, immunoblot, and the two-site immunoenzymetric and lysoPLD assays.

Results: Significant ATX expression was found in conventional outflow pathway specimens from glaucoma patients. Dex treatment induced increases in ATX mRNA levels, protein expression, and secretion in HTM cells in association with reorganization of cytoskeleton and ECM accumulation. Significant suppression of these aforementioned changes was observed after ATX/LPA-receptor/ROCK inhibition as well as suppression of fibrotic changes and MLC and cofilin phosphorylation in HTM cells.

Conclusions: The results of this study, including the robust induction of ATX by Dex treatment, in association with fibrotic changes and ECM production in HTM cells, collectively suggest a potential role for ATX-LPA pathway in the regulation of aqueous humor outflow and IOP in glaucomatous eyes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app