Add like
Add dislike
Add to saved papers

Temperature dependent electronic band structure of wurtzite GaAs nanowires.

Nanoscale 2018 January 19
It has recently become possible to grow GaAs in the wurtzite crystal phase. This ability allows interesting tests of band-structure theory. Wurtzite GaAs has two closely spaced direct conduction bands as well as three nondegenerate valence bands. The energies of the band edges are not well known, in particular not as a function of temperature. In order to improve the accuracy we have studied the temperature dependence of the conduction band minimum as well as of the second valence band maximum using resonant Raman scattering (of up to 3LO Raman lines). We find that the temperature dependence of the bandgap in wurtzite GaAs is very similar to that in zinc blende GaAs. Our results show that they have the same band gaps not only at 7 K but also at room temperature to within 5 meV. This is in some discrepancy with previous work. We find that the energy difference between the first two Γ9V and Γ7V valence bands is constant, around 100 meV, over the investigated temperature range, 7 K to 300 K. Due to a fortuitous spacing of the energy bands we find a very unexpected and strong quadruple resonance in the resonant Raman scattering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app