Add like
Add dislike
Add to saved papers

Preparation of Starch-Hard Carbon Spherules from Ginkgo Seeds and Their Phenol-Adsorption Characteristics.

Carbon spherules from ginkgo seed starch were prepared through stabilization and carbonization processes. The ginkgo seed starch was first stabilized at 195 °C for 18 h, then carbonized at 500 °C for 2 h under an N₂ atmosphere. The characterization results confirmed that carbon spherules were in the size range of 10-20 μm. Experimental data were also evaluated to find out the kinetic characteristics of phenols on the carbon spherules during the adsorption process. Adsorption processes for phenol, p -nitrophenol and p -chlorophenol were found to follow the pseudo-first order kinetic model with R ² values of 0.995, 0.997 and 0.998, while the rate constants k ₁ = 0.014, 0.009 and 0.011 min-1 showed that the adsorption is mainly controlled by adsorbate diffusion. The equilibrium data were analyzed with the Langmuir, Freundlich and Temkin-Pyzhev models and the best fit was observed with the Freundlich isotherm, suggesting the physical adsorption of phenols. From the thermodynamic functions, ∆G, ∆H, and ∆S were calculated, which showed that adsorption is more favorable at low temperature and is an exothermic process, and the adsorption of p -nitrophenol and p -chlorophenol were more advantageous than that of phenol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app