Add like
Add dislike
Add to saved papers

Growth of Wafer-Scale Standing Layers of WS 2 for Self-Biased High-Speed UV-Visible-NIR Optoelectronic Devices.

This work describes the wafer-scale standing growth of (002)-plane-oriented layers of WS2 and their suitability for use in self-biased broad-band high-speed photodetection. The WS2 layers are grown using large-scale sputtering, and the effects of the processing parameters such as the deposition temperature, deposition time, and sputtering power are studied. The structural, physical, chemical, optical, and electrical properties of the WS2 samples are also investigated. On the basis of the broad-band light absorption and high-speed in-plane carrier transport characteristics of the WS2 layers, a self-biased broad-band high-speed photodetector is fabricated by forming a type-II heterojunction. This WS2 /Si heterojunction is sensitive to ultraviolet, visible, and near-infrared photons and shows an ultrafast photoresponse (1.1 μs) along with an excellent responsivity (4 mA/W) and a specific detectivity (∼1.5 × 1010 Jones). A comprehensive Mott-Schottky analysis is performed to evaluate the parameters of the device, such as the frequency-dependent flat-band potential and carrier concentration. Further, the photodetection parameters of the device, such as its linear dynamic range, rising time, and falling time, are evaluated to elucidate its spectral and transient characteristics. The device exhibits remarkably improved transient and spectral photodetection performances as compared to those of photodetectors based on atomically thin WS2 and two-dimensional materials. These results suggest that the proposed method is feasible for the manipulation of vertically standing WS2 layers that exhibit high in-plane carrier mobility and allow for high-performance broad-band photodetection and energy device applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app