Add like
Add dislike
Add to saved papers

PNA versus DNA in electrochemical gene sensing based on conducting polymers: study of charge and surface blocking effects on the sensor signal.

Analyst 2018 Februrary 8
In this communication, we present an in-depth study of DNA/DNA, DNA/PNA and PNA/PNA hybridisation on a conducting polymer-modified electrode, measured by means of electrochemical impedance spectroscopy (EIS). DNA or PNA nucleic base sequence probes (where DNA stands for deoxyribonucleic acid and PNA for peptide nucleic acid) were covalently attached onto the sensor surface. As PNA is a non-charged variant of DNA, we investigate the effects of the surface charge and surface blocking by the surface confined probe/target nucleic bases complexes onto the kinetics of redox reaction of Fe(CN)6 3-/4- couple occurring at the electrode/solution interface that provides electrochemical readout for hybridisation. A range of hybridisation detection experiments were performed, where the surface charge and surface charge density were varied, through varying the charged nature of the probe and the target (i.e. PNA or DNA) and the density of surface-bound PNA and DNA probes. To further the understanding of these effects on the measured electrochemical signal, kinetic studies of the hybridisation reactions were undertaken, and the equilibrium binding constants and binding rate constants for the hybridisation reactions were obtained. The study provides valuable insights to guide future designs of biosensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app