Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Injectable Hydrogel with Slow Degradability Composed of Gelatin and Hyaluronic Acid Cross-Linked by Schiff's Base Formation.

Biomacromolecules 2018 Februrary 13
We developed an injectable gelatin/hyaluronic acid hydrogel with slow degradability, which consisted of carbohydrazide-modified gelatin (Gel-CDH) and hyaluronic acid monoaldehyde (HA-mCHO). Gel-CDH/HA-mCHO hydrogels were degraded much more slowly in phosphate-buffered saline than the other Schiff's base cross-linked gelatin/hyaluronic acid hydrogels that were comprised of native gelatin, adipic acid dihydrazide-modified gelatin, or hyaluronic acid dialdehyde because of stable Schiff's base formation between aldehyde and carbohydrazide groups, and suppression of ring-opening oxidation by monoaldehyde modification. This prolonged degradation would be suitable for inducing angiogenesis. Therefore, the Gel-CDH/HA-mCHO hydrogels were sufficiently stable during the angiogenesis process. In addition, the hydrogel had a pore size of 15-55 μm and a shear storage modulus of 0.1-1 kPa, which were appropriate for scaffold application. Ex vivo rat aortic-ring assay demonstrated the concentration dependency of microvascular extension in the Gel-CDH/HA-mCHO hydrogel. These results demonstrated the potential usefulness of Gel-CDH/HA-mCHO hydrogel for tissue-engineering scaffolds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app