Read by QxMD icon Read


Jiaqi Guo, Dongfei Liu, Ilari Filpponen, Leena-Sisko Johansson, Jani-Markus Malho, Sakeena Quraishi, Falk Liebner, Hélder A Santos, Orlando J Rojas
We present an approach to construct biocompatible and photoluminescent hybrid materials comprised of carbon quantum dots (CQD) and TEMPO-oxidized cellulose nanocrystals (TO-CNC). First, the amino-functionalized carbon quantum dots (NH2-CQD) were synthesized using a simple microwave method and the TO-CNCs were prepared by hydrochloric acid (HCl) hydrolysis followed by TEMPO-mediated oxidation. The conjugation of NH2-CQD and TO-CNC was conducted via carbodiimide-assisted coupling chemistry. The synthesized TO-CNC@CQD hybrid nanomaterials were characterized using X-ray photoelectron spectroscopy, cryo-transmittance electron microscopy, confocal microscopy and fluorescence spectroscopy...
May 22, 2017: Biomacromolecules
Shuntaro Suzuki, Yoshikuni Teramoto
Structural polysaccharide nanocrystals (NCs) including cellulose nanocrystal have attracted attention. In order to broaden the range of application of the NCs, we can take advantage of their original characteristics by establishing simple and reasonable processing methods. We here demonstrate a micropatterning of animal cellular adhesion by inkjet printing of aqueous dispersions of cytocompatible chitinous NCs onto cellophane films. We display how to regulate the deposition form and two-dimensional shape of the chitinous NC micromoldings using a research inkjet printer...
May 22, 2017: Biomacromolecules
Andre P Martinez, Bareera Qamar, Thomas R Fuerst, Silvia Muro, Alexander K Andrianov
A series of biodegradable drug delivery polymers with intrinsic multifunctionality have been designed and synthesized utilizing polyphosphazene macromolecular engineering approach. Novel water-soluble polymers, which contain carboxylic acid and pyrrolidone moieties attached to inorganic phosphorus-nitrogen backbone, were characterized by a suite of physico-chemical methods to confirm their structure, composition, and molecular sizes. All synthesized polyphosphazenes displayed composition dependent hydrolytic degradability in aqueous solutions at neutral pH...
May 19, 2017: Biomacromolecules
Yifan Dong, John B Matson, Kevin J Edgar
Olefin cross-metathesis, a ruthenium-catalyzed carbon-carbon double bond transformation that features high selectivity, reactivity, and tolerance of various functional groups, has been extensively applied in organic synthesis and polymer chemistry. Herein, we review strategies for performing selective cross-metathesis and its applications in polymer and polysaccharide chemistry, including constructing complex polymer architectures, attaching pendant groups to polymer backbones and surfaces, and modifying polysaccharide derivatives...
May 18, 2017: Biomacromolecules
Alexander M Tatara, Emma Watson, Tejus Satish, David W Scott, Dimitrios P Kontoyiannis, Paul S Engel, Antonios G Mikos
In this work, we describe the synthesis and characterization of variants of poly(diol fumarate) and poly(diol fumarate-co-succinate). Through a Fischer esterification, α,ω-diols and dicarboxylic acids were polymerized to form aliphatic polyester comacromers. Because of the carbon-carbon double bond of fumaric acid, incorporating it into the macromer backbone structure resulted in unsaturated chains. By choosing α,ω-diols of different lengths (1,6-hexanediol, 1,8-octanediol, and 1,10-decanediol) and controlling the amount of fumaric acid in the dicarboxylic acid monomer feed (33, 50, and 100 mol %), nine diol-based macromer variants were synthesized and characterized for molecular weight, number of unsaturated bonds per chain, and thermal properties...
May 17, 2017: Biomacromolecules
Brittany L Hartwell, Chad J Pickens, Martin Leon, Cory Berkland
A pressing need exists for antigen-specific immunotherapies (ASIT) that induce selective tolerance in autoimmune disease while avoiding deleterious global immunosuppression. Multivalent soluble antigen arrays (SAgAPLP:LABL), consisting of a hyaluronic acid (HA) linear polymer backbone cografted with multiple copies of autoantigen (PLP) and cell adhesion inhibitor (LABL) peptides, are designed to induce tolerance to a specific multiple sclerosis (MS) autoantigen. Previous studies established that hydrolyzable SAgAPLP:LABL, employing a degradable linker to codeliver PLP and LABL, was therapeutic in experimental autoimmune encephalomyelitis (EAE) in vivo and exhibited antigen-specific binding with B cells, targeted the B cell receptor (BCR), and dampened BCR-mediated signaling in vitro...
May 17, 2017: Biomacromolecules
Nannan Chen, Mouming Zhao, Taco Nicolai, Christophe Chassenieux
Self-assembly of native glycinin at room temperature was investigated as a function of the pH and the NaCl concentration. Microphase separation leading to the formation of dense protein microdomains was observed by confocal laser scanning microscopy. Depending on the conditions, the microdomains coalesced into a continuous protein rich phase or associated into large clusters. Addition of β-conglycinin inhibited phase separation and reduced the pH range in which it occurred. Microdomains of glycinin that were formed in the presence of 0...
May 16, 2017: Biomacromolecules
Jie Pang, Fang Wu, Chunyan Liao, Zhongwei Gu, Shiyong Zhang
The simple acetylation or acrylation of poly(ethyleneglycol) (PEG) terminus leads to the aggregation of PEG chains into spherical nanoparticles in water at room temperature and very low concentrations. The experiment results suggest that this aggregation happens by the variation of the local conformation of the O-CH2-CH2-O segments of PEG chains caused by the introduced acyl group, which disturbs the originally strict hydrogen bond mode between the O-CH2-CH2-O groups and the water molecules. The simple modified PEG nanoparticles are excellent carriers for drug delivery...
May 16, 2017: Biomacromolecules
Katja Obst, Guy Yealland, Benjamin Balzus, Enrico Miceli, Mathias Dimde, Christoph Weise, Murat Eravci, Roland Bodmeier, Rainer Haag, Marcelo Calderon, Nada Charbaji, Sarah Hedtrich
The adsorption of biomolecules to the surfaces of a nanoparticle (NP) following administration into biological environments is widely recognised. In particular, the "protein corona" is well understood in terms of formation kinetics and its impact upon the biological interactions of NPs. Its presence is an essential consideration in the design of therapeutic NPs. In the present study, the protein corona of six polymeric nanoparticles of prospective therapeutic use, were investigated. These included three colloidal NPs-soft core-multi-shell (CMS) NPs, plus solid cationic Eudragit® RS (EGRS) and anionic ethyl cellulose (EC) nanoparticles-and three nanogels (NGs)-thermoresponsive dendritic-polyglycerol (dPG) nanogels (NGs) and two amino-functionalised dPG-NGs...
May 16, 2017: Biomacromolecules
Taesik Eom, Kyungbae Woo, Whirang Cho, Jaeeun Heo, Daseul Jang, Jae In Shin, David Charles Martin, Jeong Jae Wie, Bong Sup Shim
Natural melanins are biocompatible conductors with versatile functionalities. Here, we report fabrication of multifunctional poly(vinyl alcohol)/melanin nanocomposites by layer-by-layer (LBL) assembly using melanin nanoparticles (MNPs) directly extracted from sepia officinalis inks. The LBL assembly offers facile manipulation of nanotextures as well as nm-thickness control of the macroscale film by varying solvent qualities. The time-resolved absorption was monitored during the process and quantitatively studied by fractal dimension and lacunarity analysis...
May 16, 2017: Biomacromolecules
Julien R G Navarro, Ulrica Edlund
A strategy is devised for the conversion of hydrophilic cellulose nanofibrils (CNFs) into hydrophobic CNF that form a stable nanocomposite dispersion for functional reinforcement of a polypropylene matrix. For that purpose, CNF was converted to a CNF-based microinitiator through an esterification reaction on the nanofibril surfaces, which efficiently initiated the controlled radical grafting polymerization of stearyl acrylate. The grafting-from modification was performed with and without a sacrificial initiator and verified with solid-state (13)C nuclear magnetic resonance and Fourier transform infrared spectroscopy...
May 16, 2017: Biomacromolecules
Tetsuo Asakura, Akio Nishimura, Shunsuke Kametani, Shuto Kawanishi, Akihiro Aoki, Furitsu Suzuki, Hironori Kaji, Akira Naito
Samia cynthia ricini is one of the wild silkworms and its silk fibroin (SF) consists of alternatively repeating poly-L-alanine (PLA) sequences as crystalline domain and glycine-rich sequences as non-crystalline domain; the structure is similar to those of spider silk and other wild silkworm silks. In this paper, we proposed a new staggered model for the packing arrangement of the PLA sequence through the use of the Cambridge Serial Total Energy Package program and a comparison of the observed and calculated chemical shifts of the PLA sequence with the Gauge Including Projector Augmented Wave method...
May 15, 2017: Biomacromolecules
Sung Han Kim, Insik In, Sung Young Park
In cancer therapy, optimizing tumor-specific delivery, tumor distribution, and cellular uptake of a drug is important for ensuring minimal toxicity and maximum therapeutic efficacy. This study characterized the therapeutic efficacy of a stimulus responsive and dual targeting nanocarrier for a bioimaging-guided photothermal and chemotherapeutic platform. Hyaluronic acid (HA) conjugated with triphenylphosphonium (TPP) and boronic acid (BA) diol-linked β-cyclodextrin (β-CD) forms an inclusion complex with paclitaxel (PTX), creating a shell-like composite on a core of carbonized fluorescent polydopamine nanoparticles (FNPs-pDA) applicable for photothermal therapy as well as bioimaging...
May 12, 2017: Biomacromolecules
Irene Buzzacchera, Mariia Vorobii, Nina Yu Kostina, Andres de Los Santos Pereira, Tomáš Riedel, Michael Bruns, Wojciech Ogieglo, Martin Möller, Christopher J Wilson, Cesar Rodriguez-Emmenegger
Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach...
May 12, 2017: Biomacromolecules
Kevin N Sill, Bradford Sullivan, Adam Carie, J Edward Semple
Described is the development of a polymeric micelle drug delivery platform that addresses the physical property limitations of many nanovectors. The system employs triblock copolymers comprised of a hydrophilic poly(ethylene glycol) (PEG) block, and two poly(amino acid) (PAA) blocks: a stabilizing cross-linking central block, and a hydrophobic drug encapsulation block. Detailed description of synthetic strategies and considerations found to be critical are discussed. Of note, it was determined that the purity of the α-amino acid-N-carboxyanhydrides (NCA) monomers and PEG macroinitiator are ultimately responsible for impurities that arise during the polymerization...
May 11, 2017: Biomacromolecules
Reeta Salminen, Niki Baccile, Mehedi Reza, Eero Kontturi
The presence of an interface generally influences crystallization of polymers from melt or from solution. Here, by contrast, we explore the effect of surface immobilization in a direct solid state polymorphic transition on individual cellulose nanocrystals (CNCs), extracted from a plant-based origin. The conversion from native cellulose I to cellulose III crystal occurred via a host-guest inclusion of ethylene diamine inside the crystal. A 60% reduction in CNC width (height) in atomic force microscopy images suggested that when immobilized on a flat modified silica surface, the stresses caused by the inclusion or the subsequent regeneration resulted in exfoliation, hypothetically, between the van der Waals bonded sheets within the crystal...
May 11, 2017: Biomacromolecules
Cristina Lavilla, Gokhan Yilmaz, Veselina Uzunova, Richard Napier, C Remzi Becer, Andreas Heise
Glycopolypeptides with defined block sequences were prepared by sequential addition of two different N-carboxyanhydrides (NCAs), followed by selective deprotection and functionalization of predefined positions within the polypeptide backbone. The sequential arrangement of the galactose units and the block-sequence length have been systematically varied. All the glycopolypeptides have been obtained with a similar overall composition and comparable molecular weights. Circular dichroism measurements revealed some dependence of the secondary structure on the primary composition of the glycopolypeptides at physiological pH...
May 11, 2017: Biomacromolecules
Jinrong Wu, Wei Qu, Guangsu Huang, Siyuan Wang, Cheng Huang, Han Liu
Natural rubber (NR) with proteins and lipids has superior mechanical properties to its synthetic counterpart, polyisoprene rubber. However, it is a challenge to unravel the morphology of proteins and lipids. Here we used two-color stochastic optical reconstruction microscopy (STORM) to directly visualize the spatial organization of proteins and lipids in NR. We found that the proteins and lipids form an interdispersed stabilizing layer on the surface of NR latex particles. After drying, the proteins and lipids form aggregates of up to 300 nm in diameter...
May 10, 2017: Biomacromolecules
Keiji Numata, Nao Ifuku, Hiroyasu Masunaga, Takaaki Hikima, Takamasa Sakai
Native silk fibers are known to demonstrate excellent mechanical properties such as high strength and ductility. However, regenerated silk material has not yet been used as a tough structural material in our everyday life. To recreate the mechanical properties with regenerated silk material, the network structure and hydration state of silk materials are studied and optimized in this study. This is the first to demonstrate the effect of chemical and physical cross-links in hydrated and dehydrated silk materials, namely, silk hydrogels and resins...
May 10, 2017: Biomacromolecules
Feiran Zhang, Siman Gong, Jun Wu, Huipeng Li, David Oupicky, Minjie Sun
The unsatisfied results of cancer therapy are caused by many issues and metastasis of cancer cells is one of the major challenge. It has been reported that inhibiting the SDF1/CXCR4 interaction can significantly reduce the metastasis of breast cancer cells to regional lymph nodes and lung. Herein, a nanogel system equipped with the FDA-approved CXCR4 antagonist AMD3100 was developed and evaluated for its combined antimetastatic and tumor targeting effects. Briefly, a bioreducible cross-linked dextrin nanogel (DNG) coated with AMD3100 was designed to possess multiple functions, including CXCR4 chemokine targeting, inhibition of tumor metastasis, and reduction-responsive intracellular release of doxorubicin (DOX) to reduce the cells proliferation...
May 10, 2017: Biomacromolecules
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"