Add like
Add dislike
Add to saved papers

Structural characterization and osteogenic bioactivity of a sulfated polysaccharide from pacific abalone (Haliotis discus hannai Ino).

Carbohydrate Polymers 2018 Februrary 16
Bone morphogenic protein-2 (BMP-2) is known to promote osteogenesis. To find novel adjuvants to enhance the activity of BMP-2, the present study investigated the structure BMP-2-induced osteogenic activity of a water-soluble polysaccharide from the gonad of pacific abalone (Haliotis discus hannai Ino) named AGSP. Through analysis of aldobiouronic acids released from AGSP, monosaccharide composition comparison of AGSP and its reduced product, and methylation analysis and NMR analysis of AGSP and its desulfated derivative, the main structure residue of AGSP was determined as →3)-GlcA(1→3)-Gal(1→ with sulfated branches comprised of prevelant Gal and minor Glc, and →4)-β-GlcA(1→2)-α-Man(1→ residue was also found. AGSP possessed a sulfate content of 12.4% with a relative molecular weight of 6.6kDa. AGSP strengthened alkaline phosphatase activity induced by BMP-2 in a dose dependent manner at 10-200μg/mL with 425% enhancement being observed at 200μg/mL, indicating AGSP could be an adjuvant candidate to enhance osteogenic activity of BMP-2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app