Add like
Add dislike
Add to saved papers

Synthesis of tigogenin MeON-Neoglycosides and their antitumor activity.

Fitoterapia 2018 March
To discover new potent cytotoxic steroidal saponins, a series of tigogenin neoglycosides were synthesized via oxyamine neoglycosylation for the first time. The preliminary bioassays for their in vitro antitumor activities against five human cancer cell lines (A375, A-549, HCT-116, HepG2 and MCF-7) were conducted. The results revealed a sugar-dependent activity profile of their cytotoxicity, the glycoconjugation converted the non-active tigogenin to the most potential product Tg29 ((3R)-N-methoxyamino-tigogenin-β-2-deoxy-d-galactoside) with IC50 value of 2.7μM and 4.6μM against HepG2 and MCF-7 cells respectively. And the 3R-tigogenin neoglycosides exhibited enhanced antitumor activity while the 3S-tigogenin almost showed no activity. Among the five cell lines, HepG2 and MCF-7 cells showed more sensitive cytotoxic responses to the products. Therefore, the neoglycosylation could be a promising strategy for the synthesis of antitumor steroidal saponins and it also proved the essential role of carbohydrate moiety of steroidal saponins in the biological activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app