Add like
Add dislike
Add to saved papers

Construction of a vascularized hydrogel for cardiac tissue formation in a porcine model.

Replacing cardiac tissues lost to myocardial infarction remains a therapeutic goal for regenerative therapy in recovering cardiac function. We assessed the feasibility of constructing a macrosized human cardiac tissue construct using pluripotent stem cell-derived cardiomyocytes or control fibroblasts infused fibrin/collagen hydrogel and performed ectopic implantation in peripheral vascular system of a porcine model for 3 weeks. Finally, an optimized vascularized cardiac construct was explanted and grafted onto porcine myocardium for 2 weeks. Myocardial-grafted human cardiac constructs showed a nascent tissue-like organization with aligned cardiomyocytes within the remodelled collagen matrix. Nevertheless, no significant changes in intraconstruct density of cardiomyocytes were observed in the myocardial-grafted constructs (human embryonic stem cell [hESC]-derived cardiomyocyte [n = 4]: 70.5 ± 22.8 troponin I+ cardiomyocytes/high power field [HPF]) as compared to peripherally implanted constructs (hESC-derived cardiomyocyte [n = 4]: 59.0 ± 19.6 troponin I+ cardiomyocytes/HPF; human induced pluripotent stem cell-derived cardiomyocyte [n = 3]: 50.9 ± 8.5 troponin I+ cardiomyocytes/HPF, p = ns). However, the myocardial-grafted constructs showed an increased in neovascularization (194.4 ± 24.7 microvessels/mm2 tissue, p < .05), microvascular maturation (82.8 ± 24.7 mature microvessels/mm2 , p < .05), and tissue-like formation whereas the peripherally implanted constructs of hESC-derived cardiomyocyte (168.3 ± 98.2 microvessels/mm2 tissue and 68.1 ± 33.4 mature microvessels/mm2 ) and human induced pluripotent stem cell-derived cardiomyocyte (86.8 ± 57.4 microvessels/mm2 tissue and 22.0 ± 32.7 mature microvessels/mm2 ) were not significantly different in vascularized response when compared to the control human fibroblasts (n = 3) constructs (65.6 ± 34.1 microvessels/mm2 tissue and 30.7 ± 20.7 mature microvessels/mm2 ). We presented results on technical feasibility and challenges of grafting vascularized centimetre-sized human cardiac construct that may spur novel approaches in cardiac tissue replacement strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app