Add like
Add dislike
Add to saved papers

Photodynamic and photothermal tumor therapy using phase-change material nanoparticles containing chlorin e6 and nanodiamonds.

This paper describes the fabrication and evaluation of phase-change material (PCM) nanoparticles containing chlorin e6 (Ce6) and nanodiamonds (NDs) for photodynamic and photothermal approaches for tumor therapy, respectively. The temperature of the PCM nanoparticles containing NDs (ND/PCM, 0.5mg/mL in water) is increased to 45°C during laser exposure for 5min. The singlet oxygen generation intensity of PCM nanoparticles containing Ce6 and NDs (Ce6/ND/PCM) is gradually increased with respect to the laser exposure time. Also, the release of Ce6 from Ce6/ND/PCM can be controlled in an on-and-off manner using laser. Cell ablation tests reveal that Ce6/ND/PCM greatly ablates KB cells upon laser exposure, which is attributed to both the temperature increase in the media and singlet oxygen generation by the released Ce6. In an animal model, tumor volume is notably reduced over time after the intratumoral injection of Ce6/ND/PCM and subsequent laser exposure with a higher efficiency compared to ND/PCM. The Ce6/ND/PCM can be a promising nanomedicine for tumor therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app