Add like
Add dislike
Add to saved papers

αII-spectrin in T cells is involved in the regulation of cell-cell contact leading to immunological synapse formation?

T-lymphocyte activation after antigen presentation to the T-Cell Receptor (TCR) is a critical step in the development of proper immune responses to infection and inflammation. This dynamic process involves reorganization of the actin cytoskeleton and signaling molecules at the cell membrane, leading to the formation of the Immunological Synapse (IS). The mechanisms regulating the formation of the IS are not completely understood. Nonerythroid spectrin is a membrane skeletal protein involved in the regulation of many cellular processes, including cell adhesion, signaling and actin cytoskeleton remodeling. However, the role of spectrin in IS formation has not been explored. We used molecular, imaging and cellular approaches to show that nonerythroid αII-spectrin redistributes to the IS during T-cell activation. The redistribution of spectrin coincides with the relocation of CD45 and LFA-1, two components essential for IS formation and stability. We assessed the role of spectrin by shRNA-mediated depletion from Jurkat T cells and show that spectrin-depleted cells exhibit decreased adhesion and are defective in forming lamellipodia and filopodia. Importantly, IS formation is impaired in spectrin-depleted cells. Thus, spectrin may be engaged in regulation of distinct events necessary for the establishment and maturity of the IS: besides the involvement of spectrin in the control of CD45 and LFA-1 surface display, spectrin acts in the establishment of cell-cell contact and adhesion processes during the formation of the IS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app