Add like
Add dislike
Add to saved papers

Silver Niobate Lead-Free Antiferroelectric Ceramics: Enhancing Energy Storage Density by B-Site Doping.

Lead-free dielectric ceramics with high recoverable energy density are highly desired to sustainably meet the future energy demand. AgNbO3 -based lead-free antiferroelectric ceramics with double ferroelectric hysteresis loops have been proved to be potential candidates for energy storage applications. Enhanced energy storage performance with recoverable energy density of 3.3 J/cm3 and high thermal stability with minimal energy density variation (<10%) over a temperature range of 20-120 °C have been achieved in W-modified AgNbO3 ceramics. It is revealed that the W6+ cations substitute the B-site Nb5+ and reduce the polarizability of B-site cations, leading to the enhanced antiferroelectricity, which is confirmed by the polarization hysteresis and dielectric tunability. It is believed that the polarizability of B-site cations plays a dominant role in stabilizing the antiferroelectricity in AgNbO3 system, in addition to the tolerance factor, which opens up a new design approach to achieve stable antiferroelectric materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app