Journal Article
Review
Add like
Add dislike
Add to saved papers

Animal models of L-DOPA-induced dyskinesia: the 6-OHDA-lesioned rat and mouse.

Appearance of L-DOPA-induced dyskinesia (LID) represents a major limitation in the pharmacological therapy with the dopamine precursor L-DOPA. Indeed, the vast majority of parkinsonian patients develop dyskinesia within 9-10 years of L-DOPA oral administration. This makes the discovery of new therapeutic strategies an important need. In the last decades, several animal models of Parkinson's disease (PD) have been developed, to both study mechanisms underlying PD pathology and treatment-induced side effects (i.e., LID) and to screen for new potential anti-parkinsonian and anti-dyskinetic treatments. Among all the models developed, the 6-OHDA-lesioned rodents represent the models of choice to mimic PD motor symptoms and LID, thanks to their reproducibility and translational value. Under L-DOPA treatment, rodents sustaining 6-OHDA lesions develop abnormal involuntary movements with dystonic and hyperkinetic features, resembling what seen in dyskinetic PD patients. These models have been extensively validated by the evidence that dyskinetic behaviors are alleviated by compounds reducing dyskinesia in patients and non-human primate models of PD. This article will focus on the translational value of the 6-OHDA rodent models of LID, highlighting their main features, advantages and disadvantages in preclinical research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app