Add like
Add dislike
Add to saved papers

Assessment of arsenic oxidation potential of Microvirga indica S-MI1b sp. nov. in heavy metal polluted environment.

Chemosphere 2018 March
Arsenic oxidizing α-proteobacterial strain Microvirga indica S-MI1b sp. nov. was isolated from metal industry soil and has the ability to oxidize 15 mM of arsenite [As(III)] completely in 39 h. The strain S-MI1b resists to different heavy metals and it oxidizes arsenite in presence of Li, Pb, Hg, Sb(III), Cd, Cr(VI), Ni, and exhibited growth inhibitory effect in presence of Hg, Cu, and Cd at higher concentration. The morphology of Microvirga indica S-MI1b changed in presence of heavy metals however there was no accumulation of As(III) in the cells. The study showed that Microvirga indica S-MI1b can oxidize arsenite at broad pH ranges from 4.0 to 9.0 with optimum at pH 7.0. The kinetic studies of arsenite oxidation by strain S-MI1b signified that it has greater affinity towards As(III). The arsenite oxidase activity of cells grown in presence of Li and Cr(VI) supported the cell culture studies. This is first report on biotransformation of arsenite by Microvirga genus and also arsenite oxidation in presence of heavy metals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app