Add like
Add dislike
Add to saved papers

Overexpression of PDR16 confers resistance to complex sphingolipid biosynthesis inhibitor aureobasidin A in yeast Saccharomyces cerevisiae.

FEMS Microbiology Letters 2018 Februrary 2
Sphingolipids are essential for normal cell growth of yeast Saccharomyces cerevisiae. Aureobasidin A (AbA), an antifungal drug, inhibits Aur1, an enzyme catalyzing the synthesis of inositol phosphorylceramide, and induces a strong growth defect in yeast. In this study, we screened for multicopy suppressor genes that confer resistance to AbA, and identified PDR16. In addition, it was found that PDR17, a paralog of PDR16, also functions as a multicopy suppressor. Pdr16 and Pdr17 belong to a family of phosphatidylinositol transfer proteins; however, cells overexpressing the other members of the family hardly exhibited resistance to AbA. Overexpression of a lipid-binding defective mutant of Pdr16 did not confer the resistance to AbA, indicating that the lipid-binding activity is essential for acquiring resistance to AbA. When expression of the AUR1 gene was repressed by a tetracycline-regulatable promoter, the overexpression of PDR16 or PDR17 did not suppress the growth defect caused by the AUR1 repression. Quantification analysis of complex sphingolipids revealed that in AbA-treated cells, but not in cells in which AUR1 was repressed by the tetracycline-regulatable promoter, the reductions of complex sphingolipid levels were suppressed by the overexpressed PDR16. Thus, it was indicated that the overexpression of PDR16 reduces the effectiveness of AbA against intracellular Aur1 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app