Add like
Add dislike
Add to saved papers

One-Step in Situ Detection of miRNA-21 Expression in Single Cancer Cells Based on Biofunctionalized MoS 2 Nanosheets.

Here, we report the one-step in situ detection of targeted miRNAs expression in single living cancer cells via MoS2 nanosheet-based fluorescence on/off probes. The strategy is based on the folic acid (FA)-poly(ethylene glycol)-functionalized MoS2 nanosheets with adsorbed dye-labeled single-stranded DNA (ssDNA). Once the nanoprobes are internalized into cancer cells, the hybridization between the probes and target miRNA results in the detachment of dye-labeled ssDNA from MoS2 nanosheets surface, leading to the green fluorescence recovery. In this nanoprobe, MoS2 nanosheets offer advantages of high fluorescence quenching efficiency and extremely low toxicity. The FA conjugation could protect the probes and improve cancer cell transfection efficiency. The ability of this nanoprobe for endogenous miRNA detection in single living cancer cells is demonstrated for two types of cancer cells with different miRNA-21 expressions (MCF-7 and Hela cells). This functionalized MoS2 nanosheet-based nanoprobes could provide a sensitive and real-time detection of intracellular miRNA detection platform.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app