Add like
Add dislike
Add to saved papers

β-Hydroxy-β-methyl Butyrate Is More Potent Than Leucine in Inhibiting Starvation-Induced Protein Degradation in C2C12 Myotubes.

Leucine (Leu) and its metabolites α-ketoisocaproate (KIC) and β-hydroxy-β-methyl butyrate (HMB) are potent regulators of protein turnover. The aim of this study was to compare the inhibitory effects of Leu, KIC, and HMB on protein degradation and to investigate the mechanisms involved. The results showed that the inhibitory effect of HMB (0.38 ± 0.04) was more potent than that of Leu (0.76 ± 0.04) and KIC (0.56 ± 0.04, P < 0.01), and was significantly abolished in the presence of LY294002 (1.48 ± 0.02) and rapamycin (1.96 ± 0.02, P < 0.01). In the presence of insulin, the inhibitory effect of HMB (0.34 ± 0.03) was still more effective than that of Leu (0.60 ± 0.04) and KIC (0.57 ± 0.08, P < 0.05). Interestingly, LY294002 treatment markedly attenuated the effect of HMB, while rapamycin treatment failed to exert the same effect. Thus, HMB appears to be more potent than Leu and KIC in inhibiting protein degradation in the absence or presence of insulin, and this inhibitory effect may be dependent on PI3K/Akt signaling pathway regardless of insulin, and mTOR signaling was only involved in this effect of HMB in the absence of insulin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app