Add like
Add dislike
Add to saved papers

Lysophosphatidic acid accelerates development of porcine embryos by activating formation of the blastocoel.

Culture media modifications, including the addition of various factors, are important for the in vitro production of oocytes and embryos. In this study, we investigated the effects of lysophosphatidic acid (LPA) on porcine embryo development. Porcine parthenogenetic embryos were cultured with 0, 0.1, 1, and 10 μM LPA for 7 days, or cultured in basic medium until Day 4 and then treated with LPA from Days 4 to 7. No difference in the in vitro development of embryos cultured with LPA for 7 days was observed. Conversely, rates of blastocyst and over-expanded blastocyst formation were higher in the 0.1 and 1 µM LPA-treated versus the other groups of embryos treated from Days 4 to 7. Moreover, formation of early blastocysts occurred earlier and embryo size was larger in LPA-treated compared to control embryos. Expression of Connexin 43 and gap junction and cell adhesion-related genes (GJC1 and CDH1, respectively) was also higher in LPA-treated compared to control embryos. Despite no difference in the blastocyst total cell number between groups, the apoptotic index was lower in the LPA-treated group than in the control group; indeed, BCL2L1 (B-cell lymphoma 2-like protein 1) expression increased while BAK (Bcl-2 homologous antagonist killer) decreased in the LPA-treated group. Thus, addition of LPA to the medium from Days 4 to 7 of culture improves blastocyst formation and aids the development of preimplantation embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app