Add like
Add dislike
Add to saved papers

Cytosolic Iron-Sulfur Assembly Is Evolutionarily Tuned by a Cancer-Amplified Ubiquitin Ligase.

Molecular Cell 2018 January 5
The cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway functions to incorporate inorganic Fe-S cofactors into a variety of proteins, including several DNA repair enzymes. However, the mechanisms regulating the CIA pathway are unknown. We describe here that the MAGE-F1-NSE1 E3 ubiquitin ligase regulates the CIA pathway through ubiquitination and degradation of the CIA-targeting protein MMS19. Overexpression or knockout of MAGE-F1 altered Fe-S incorporation into MMS19-dependent DNA repair enzymes, DNA repair capacity, sensitivity to DNA-damaging agents, and iron homeostasis. Intriguingly, MAGE-F1 has undergone adaptive pseudogenization in select mammalian lineages. In contrast, MAGE-F1 is highly amplified in multiple human cancer types and amplified tumors have increased mutational burden. Thus, flux through the CIA pathway can be regulated by degradation of the substrate-specifying MMS19 protein and its downregulation is a common feature in cancer and is evolutionarily controlled.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app