Add like
Add dislike
Add to saved papers

Methotrexate loaded gellan gum microparticles for drug delivery.

Recently, polysaccharides based microparticles have been found to offer an attractive potential as a carrier in drug delivery field. In this study, bare gellan gum microparticles (GG MPs) and methotrexate (MTX) loaded gellan gum microparticles (MTX-GG MPs) prepared by using simple water-in-oil (W/O) emulsion solvent diffusion method. The developed microparticles (MPs) were found discretely distributed in a spherical shape. MTX has been encapsulated in microparticles with 84.8 ± 1.68% encapsulation efficiency (%EE) and 6.45 ± 0.07% loading capacity (%LC). The Fourier Transform Infrared Spectroscopy (FTIR) characterization of the MPs clearly indicated the physical encapsulation of MTX into polymeric matrix of MPs. Thermogravimetric analysis (TGA) characterization showed slightly higher thermal stability of MTX-GG MPs in comparison to the GG MPs. In vitro release study of MTX-GG MPs showed 84% drug release within 24 h. The hemolysis study of GG MPs and MTX-GG MPs on human red blood cells (RBCs) showed <1.0% hemolysis. The cell viability studies on L929 showed GG MPs, and MTX-GG MPs are biocompatible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app