Add like
Add dislike
Add to saved papers

In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber.

Possessing excellent biocompatibility, biodegradability and good reactive activity, silk fiber has been attracting great attention in biomedicine including surgical suture, drug delivery and tissue engineering. So far, several protocols have been developed to further improve the mechanical properties of the silk fiber. In current study, a novel in suit biomineralization strategy was developed to produce nano-hydroxyapatite (HA) strengthened silk fiber based on the natural alkaline condition in the body of silkworm by feeding the silkworm with ion precursors of Ca2+ and PO4 3- ions. Our observation proved that nanocomposite silk fiber contained more α-helix and random coil structures and fewer β-sheets. Tensile test showed that such obtained silk fiber has superior mechanical properties compared to normal silk fiber. To the best of our knowledge, no attempts have been made to fabricate the nanocomposite SF by in situ biomineralization and such protocol established in the current study may shed light on the investigation of nanoparticles reinforced silk fiber organisms of Bombyx mori.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app