Add like
Add dislike
Add to saved papers

An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance.

Ethylene-Responsive Factors (ERFs) are plant-specific transcription factors (TFs) involved in multiple biological processes, especially in abiotic stress tolerance. However, the ERFs from woody halophytes that are involved in salt stress have been little studied. In the present investigation, we characterized a subfamily member of ERF TFs from Tamarix hispida, ThCRF1, which responds to salt stress. ThCRF1 is a nuclear protein that binds to the motifs including TTG, DRE and GCC-box. Transient transformation was performed to generate T. hispida overexpressing ThCRF1 and RNA interference (RNAi)-silenced ThCRF1 to analyze its function using gain- and loss-of-function methods. Overexpression of ThCRF1 in T. hispida significantly improved tolerance to salt-shock-induced stress; by contrast, RNAi-silence of ThCRF1 significantly decreased tolerance to salt-shock-induced stress. Further experiments showed that ThCRF1 induces the expression of genes including those encoding pyrroline-5-carboxylate synthetase (P5CS), trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), superoxide dismutase (SOD) and peroxidase (POD), which lead to enhanced proline and trehalose levels and increased SOD and POD activities. These results were further confirmed by studying transgenic Arabidopsis plants overexpressing ThCRF1. Therefore, the results suggested that ThCRF1 improves tolerance to salt-shock-induced stress by enhancing trehalose and proline biosynthesis to adjust the osmotic potential, and by improving SOD and POD activities to increase reactive oxygen species scavenging capability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app